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Abstract. Starting from the working hypothesis that both physics and the corresponding
mathematics have to be described by means of discrete concepts on the Planck scale, one of the
many problems one has to face in this enterprise is to find the discrete protoforms of the building
blocks of continuum physics and mathematics. A core concept is the notion ofdimension. In the
following we develop such a notion for irregular structures such as (large) graphs and networks
and derive a number of its properties. Among other things we show its stability under a wide
class of perturbations which is important if one has ‘dimensional phase transitions’ in mind.
Furthermore we systematically construct graphs with almost arbitrary ‘fractal dimension’ which
may be of some use in the context of ‘dimensional renormalization’ or statistical mechanics on
irregular sets.

1. Introduction

In two recent papers [1, 2] we developed a certain framework in the form of a class of
‘cellular network dynamics’ which are designed to mimic the dynamics of the physical
vacuum or spacetime on the Planck scale. In doing this our working philosophy was that
both physics and the corresponding mathematics are genuinely discrete on this primordial
level. The continuum concepts of ordinary spacetime physics are then supposed to emerge
from certain discrete patterns via a kind of ‘renormalization group process’ on the much
coarser scale of resolution given by the comparatively small energies of present day high-
energy physics. It is one of our aims to find these discrete protoforms.

A crucial concept in this context is a version of ‘intrinsic dimension’ of such discrete
irregular networks which geometrically are graphs. This concept should be defined in an
intrinsic way, without making open or implicit recourse to continuum concepts whatsoever
or any kind of embedding dimension, as we want to understand, among other things, what
properties are actually encoded in a notion like dimension on the most fundamental physical
level. On the other side, we want to know how the continuum concept of dimension, which
is to a large extent of ana priori mathematical, namely, geometrical origin, comes into
being, starting from an intrinsic property of discrete irregular systems, for example general,
typically very large and almost randomly organized graphs which are supposed to encode
the ‘geometrodynamics’ of spacetime on the Planck scale.

In section 5 of [1] we introduced such a concept which seems suitable to us and which
characterizes to some extent the ‘wiring’ of the network. At the time of writing [1] we
scanned the literature accessible to us in vain for similar ideas and got the impression
that such lines of thought had not been pursued in this context. Some time later we were
kindly informed by Thomas Filk that a similar concept had been studied by himself and a
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couple of other physicists (see [3–5] and references therein) in, however, a slightly different
context. (They typically investigated the simplicial resolution of continuous manifolds and
their numerical treatment via Monte Carlo simulations.)

On the other hand, at least as far as we can see, this concept has not been systematically
developed and many questions of principal interest remain open. In the following we attempt
to formulate and solve a couple of problems which naturally emerge in this context, more
specifically we embark on developing a full fledged mathematical machinery around this
concept which may then be applied to quite diverse fields of physics and mathematics.

Among other things we clarify the somewhat hidden relations to certain parts of ‘fractal
geometry’ and construct graphs with almost arbitrary ‘fractal dimensions’ along these lines.
Furthermore we show that the two, at first glance almost identical, definitions of dimension
we introduced in [1] are actually different on certain ‘exceptional’ sets while being identical
on ‘generic’ sets. This is a phenomenon also well known from the various notions of
dimension in fractal geometry.

While the first definition, which we call ‘internal scaling dimension’ in the following
(the version which occurs under this label in e.g. [3]), appears to be more natural from
a mathematical point of view, the second is in our opinion more fundamental as far as
the encoding of physical data is concerned, for example, the wiring of the graphs under
discussion. For this reason we call it the ‘connectivity dimension’ as it reflects to some
extent the way the node states are interacting with each other over larger distances via the
various bond sequences connecting them.

Another interesting point is the structural stability of such a concept under local and
extended perturbations. We showed, for example, that if we start from a given graph with
a dimensionD this value remains stable under a rather large class of bond insertions. As
a consequence one has to add bonds between increasingly distant nodes in order to change
the dimension of a graph. This is of some relevance if one wants to invent dynamical
mechanisms which are designed to trigger dimensional phase transitions.

Presently we pursue several lines of research concerning applications in quite diverse
fields of physics and mathematics, e.g. noncommutative geometry, dimensional phase
transitions (see also [2]), statistical mechanics and functional analysis.

2. The physical context

As the following sections will deal almost entirely with the deduction of a variety of
mathematical results without offering much physical motivation, it seems advisable to say
some words in advance about the proper physical context and possible applications. While
the main thrust is without doubt towards fundamental questions in quantum gravity, there
are other possible applications that we briefly indicate below before embarking on the
motivations derived from speculations about the microscopic structure of spacetime.

Some time ago one of the authors (MR) entertained ideas to complement concepts of
‘dimensional renormalization’ in statistical mechanics (e.g. the ‘d − ε expansion’) where
one formally perturbs around some integer dimension for purely technical reasons, by
explicitly constructing real model systems having such a nonstandard dimension in some
physically meaningful and well-defined sense. Starting almost from first principles, this led
to an analysis about how and where a notion like dimension actually enters the physical
calculations, having in particular the dimensional dependence of phase transitions and critical
phenomena in mind. Some preliminary steps in this direction were also taken by Mattis in
[8]. Other fields of possible applications are of course ‘fractal physics’ and the theory of
‘disordered systems’.
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As for quantum gravity, presently our main field of interest, motivations and applications
are more obvious. Our guiding philosophy has been that at the very bottom, spacetime exists
as a kind of a coarse-grained superstructure over a ‘discrete’ substratum which is assumed to
consist (in order to fix the stage) of elementary cells (or modules) interacting with each other
via a network of elementary interactions with, possibly, variable strength. In the extreme
case they can be temporarily active or inactive. This leads to the possibilty that something
we may then call spacetime emerges via a dynamical process (of perhaps, phase-transition
type) from a more chaotic and violent initial phase. More details can be found in [2].
To characterize such phases topologically (or rather geometrically) a notion like ‘intrinsic
dimension’ (i.e. not using a kind of embedding space) appears to be extremely useful in our
context of discrete but perhaps densely entangled structures.

While our approach seems to differ to a greater or lesser extent from other existing
ones, it nevertheless seems worthwhile to put it into its proper context, as we hope in
particular that a closer analysis may ultimately reveal that the links among the various
working philosophies are actually stronger than may be expected at first glance.

There are in fact quite a few groups in quantum gravity which follow related lines of
ideas (the short list of references below is rather tentative and informal). To begin with,
there are some early (prophetic) remarks of Penrose in e.g. [9] who introduced, among
other things, the concept of ‘spin networks’, which is in some sense a particular type of
dynamic graph. This concept then re-emerges from a different strand of ideas developed
more recently by many people (see e.g. [10, 11] and references therein). As for discrete sets
and their analysis there exists the work of Sorkinet al [12, 13]. Furthermore a different
but equally interesting approach is pursued by Isham under catchwords such as ‘quantum
topology’ etc [14].

We are quite confident that our own approach has close ties to the above mentioned
cluster of recent ideas, which, we hope, the future will show.

3. Graph theoretical definitions

In this section we give the necessary definitions to define the internal scaling dimension of
graphs. Most of the notions are well known in graph theory but we nevertheless want to
repeat them to avoid any confusion concerning the exact definitions.

First of all we need to define an undirected simple graph. This will be our primary
object of interest.

Definition 3.1 (undirected simple graph).An undirected simple graphconsists of two
countable setsN andB. We denote the elements ofN as ni with i ∈ I , I ⊆ N. The
elements ofB are denoted asbik, i, k ∈ I . The setB is isomorphic to a subset ofN × N
and the existence ofbik implies the existence ofbki .

Remark.Many mathematicians use a slightly different notation. They denoteN (nodes) as
V (vertices) andB (bonds) asE (edges).

In the followingG = (N,B) will always be an undirected simple graph. We also need
the notion of the degree of a nodeni ∈ N .

Definition 3.2 (degree).The degreeof a nodeni ∈ N is the number of bonds incident with
it, i.e. the number of bonds which haveni at one end. We countbik andbki only once as
we interpret them as the same bond.
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We assume the node degree of any nodeni ∈ N of the graphs under consideration to be
finite. The next step is to define a metric structure onG. To this end we need to define
paths inG and their length.

Definition 3.3 (path).A path γ of lengthl in G is an ordered(l+1)-tuple of nodesni ∈ N ,
i ∈ I , I = {0, . . . , l} with the propertiesni+1 6= ni andbi i+1 ∈ B.

Remark.A single nodeni ∈ N is a path of length 0.

This definition encodes the obvious idea of a path inG allowing multiple transversals
of nodes or bonds. Jumps across nonexistent bonds and repititions of a single node are not
allowed. Sometimes this notion of a path is also called abond sequence.

Slightly different definitions are also quite common. The path is often restricted to
contain any bond inB at most once. Sometimes even any repetition of nodes in a path is
excluded. We will call a path with this property—-that allni ∈ γ are pairwise different—a
simple path.

The concept of paths onG now leads to a natural definition for the distance of two
nodesni andnj ∈ N , namely the length of the shortest path connectingni andnj .

Definition 3.4 (metric).A metric d on G is defined by

d(ni, nj ) :=
{

min{l(γ ) : ni, nj ∈ γ } if such γ exist

∞ otherwise
(1)

in which l(γ ) denotes the length ofγ .

That this actually defines a metric is easily established. Finally we need the notion of
neighbourhoods which follows canonically from the metric.

Definition 3.5 (neighbourhood).Let ni ∈ N be an arbitrary node inG. An n- neighbourhood
of ni is the setUn(ni) := {nj ∈ N : d(ni, nj ) 6 n}.

Remark.The topology generated by then-neighbourhoods is the discrete topology as should
be expected from the construction and the discreteness of graphs.

We will denote thesurfaceor boundary of the neighbourhoodUn(ni) as ∂Un(ni) :=
Un(ni)\Un−1(ni), ∂U0(ni) = {ni} and the cardinality ofUn(ni) and∂Un(ni) as |Un(ni)| and
|∂Un(ni)| respectively.

4. Dimensions of graphs and networks

Now we have all the tools to define the central notion of this paper, the notion of the
internal scaling dimensionof G.

Definition 4.6 (internal scaling dimension).Let x ∈ N be an arbitrary node ofG. Consider
the sequence of real numbersDn(x) := ln |Un(x)|

ln(n) . We sayDS(x) := lim infn→∞Dn(x)

is the lower andDS(x) := lim supn→∞Dn(x) the upper internal scaling dimensionof G
starting fromx. If DS(x) = DS(x) =: DS(x) we sayG has internal scaling dimension
DS(x) starting fromx. Finally, if DS(x) = DS ∀x, we simply sayG has internal scaling
dimensionDS .
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A second notion of dimension we want to introduce is theconnectivity dimensionwhich is
based on the surfaces of neighbourhoods∂Un(ni) rather than on the whole neighbourhoods
Un(ni).
Definition 4.7 (connectivity dimension).Let x ∈ N again be an arbitrary node ofG. We
set D̃n(x) := ln |∂Un(x)|

ln(n) + 1 and defineDC(x) := lim infn→∞ D̃n(x) as the lower and

DC(x) := lim supn→∞ D̃n(x) as theupper connectivity dimension. If lower and upper
dimension coincide, we sayG has connectivity dimensionDC(x) := DC(x) = DC(x)

starting from x. If DC(x) = DC for all x ∈ N we call DC simply the connectivity
dimensionof G.

One could easily think that both notions of dimension are equivalent. This is, however, not
the case as one definition is more robust than the other which will be shown in detail in
section 4.2.

The internal scaling dimension is rather a mathematical concept and is related to well
known dimensional concepts in fractal geometry as we will see in section 5.2. The
connectivity dimension on the other hand seems to be a more physical concept as it measures
more precisely how the graph is connected and thus how nodes can influence each other.

In the following section we wish to establish the basic properties of the internal scaling
dimension of graphs.

4.1. Basic properties of the internal scaling dimension

The first lemma gives us a criterion for the uniform convergence ofDS(x) or DS(x) to
some commonDS or DS for all nodesx in G.

Lemma 4.8.Let x,y ∈ N be two arbitrary nodes inG with d(x, y) < ∞. Then
DS(y) = DS(x) andDS(y) = DS(x).

Proof. Let a := d(x, y) be the distance of the nodesx andy. We have

Un−a(y) ⊆ Un(x) ⊆ Un+a(y) (2)

⇒ ln |Un−a(y)|
ln(n)

6 ln |Un(x)|
ln(n)

6 ln |Un+a(y)|
ln(n)

(3)

⇒ ln |Un−a(y)|
ln(n− a)+ ln

(
n
n−a

) 6 ln |Un(x)|
ln(n)

6 ln |Un+a(y)|
ln(n+ a)− ln

(
n+a
n

) (4)

⇒ DS(x) = lim inf
n→∞

ln |Un(x)|
ln(n)

= lim inf
n→∞

ln |Un(y)|
ln(n)

= DS(y). (5)

Similarly we obtainDS(x) = DS(y). �

Another rather technical lemma provides us with a convenient method to calculate the
dimension of certain graphs, e.g. the self-similar or hierarchical graphs we construct in
section 5.2. It shows that under one technical assumption the convergence of a subsequence
of Dn(x) is sufficient for the convergence ofDn(x) itself.

Lemma 4.9.Let x ∈ N be an arbitrary node ofG and let(|Unk (x)|)k∈N be a subsequence
of (|Un(x)|)n∈N. There may exist a number 1> c > 0 such that nk

nk+1
> c holds for all

k > K ∈ N. Then lim infk→∞
ln |Unk (x)|
ln(nk)

= lim infn→∞Dn(x) = DS(x) and similarly for

DS(x).
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Proof. Let n ∈ N be an arbitrary natural number. We find ak ∈ N such thatnk 6 n 6 nk+1.
As the sequence(|Un(x)|) is monotone this implies|Unk (x)| 6 |Un(x)| 6 |Unk+1(x)|.
Therefore we have

ln |Unk (x)|
ln(n)

6 ln |Un(x)|
ln(n)

6 ln |Unk+1(x)|
ln(n)

(6)

⇒ ln |Unk (x)|
ln(nk)+ ln

(
n
nk

) 6 ln |Un(x)|
ln(n)

6 ln |Unk+1(x)|
ln(nk+1)+ ln

(
n
nk+1

) (7)

⇒ ln |Unk (x)|
ln(nk)+ ln( 1

c
)
6 ln |Un(x)|

ln(n)
6 ln |Unk+1(x)|

ln(nk+1)+ ln(c)
(8)

⇒ lim inf
n→∞ Dn(x) = lim inf

k→∞
ln |Unk (x)|

ln(nk)
. (9)

The same proof holds for lim sup. �

This result is well known in the context of calculation schemes for dimensions in fractal
geometry, see e.g. [6].

Naturally one also may ask how the internal scaling dimension behaves under insertion
of bonds intoG. We were able to show that it is pretty much stable under any local changes.
We state this in the following lemma.

Lemma 4.10.Let k ∈ N be a positive natural number andx ∈ N a node inG. Insertion of
bonds between arbitrary many pairs of nodes (y, z) obeying the relationd(y, z) 6 k does
not changeDS(x) or DS(x).

Proof. We denote the new graph built by insertion of new bonds intoG asG ′ and accordingly
the neighbourhoods inG ′ asU ′n(·). Being a node inG, x is also a node inG ′. The restriction
on the choice of additional bonds inG ′ implies that even if we connect every nodey ∈ N
with every node inUk(y), which is the maximum we are allowed to do, we still cannot get
beyondUn(x) with less than or equal tob n

k
c† steps,

Ub n
k
c(x) ⊆ U ′b n

k
c(x) ⊆ Un(x) (10)

⇒ ln |Ub n
k
c(x)|

ln(b n
k
c) 6

ln |U ′b n
k
c(x)|

ln(b n
k
c) 6 ln |Un(x)|

ln(b n
k
c) . (11)

Becauseb n
k
c > n

2k for sufficiently largen, we immediately obtain

ln |Ub n
k
c(x)|

ln(b n
k
c) 6

ln |U ′b n
k
c(x)|

ln(b n
k
c) 6 ln |Un(x)|

ln(n)− ln(2k)
(12)

⇒ lim inf
n→∞

ln |U ′n(x)|
ln(n)

= lim inf
n→∞

ln |Un(x)|
ln(n)

(13)

where in the last step lemma 4.9 has been used. An identical result holds for lim sup.�

Remark. Obviously the insertion of afinite number of additional bonds between nodesy
and z with d(y, z) < ∞ does not change the internal scaling dimension either. Therefore
we can slightly generalize lemma 4.10 by changing our requirements to the following. Only
bonds between nodes of finite distance and finitely many bonds between nodes of distance

† The floor-symbol,bxc, denotes the largest integer belowx, see e.g. [15].
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d(y, z) > k are inserted intoG to form G ′. Then G ′ still has the same internal scaling
dimensionsDS andDS asG.

Conclusions. We have seen that the internal scaling dimension does not depend on the
node from which we start our calculation and that under not too strong conditions even the
convergence of a subsequence of the relevant sequenceDn(x) is sufficient to calculateDS

andDS . Furthermore the dimension is stable under local changes in the wiring of the graph.
This is a very desirable feature for physical reasons. Furthermore it shows that a mechanism
inducing dimensional phase transitions must relate nodes of increasing distance, i.e. change
the graph nonlocally. We will illustrate this fact with an example in section 5.2.5.

4.2. Relations between internal scaling dimension and connectivity dimension

As already stated above the two concepts of dimension we introduced are not equivalent.
In the following lemma we show that the existence of the connectivity dimension implies
the existence of the internal scaling dimension and that they then have the same value.

Lemma 4.11.Let x ∈ N again be an arbitrary node inG. In the case that the limit
limn→∞ ln |∂Un(x)|

ln(n) =: DC(x) − 1 exists withDC(x) > 1, G has internal scaling dimension
DS(x) = DC(x) starting fromx.

Proof. We know thatDC(x) > 1 exists and have to show that this implies the existence of
limn→∞ ln |Un(x)|

ln(n) and that the limit isDC(x). Let D := DC(x) and ε > 0 be an arbitrary

positive number small enough such thatD − 1− ε > 0. From the convergence ofln |∂Un(x)|
ln(n)

we know that we can findN ∈ N such that∣∣∣∣ ln |∂Un(x)|ln(n)
−D + 1

∣∣∣∣ < ε ∀n > N (14)

⇒ −ε < ln |∂Un(x)|
ln(n)

−D + 1< ε (15)

⇒ (D − 1− ε) ln(n) < ln |∂Un(x)| < (D − 1+ ε) ln(n) (16)

⇒ nD−1−ε < |∂Un(x)| < nD−1+ε . (17)

On the other hand we naturally have

|Un(x)| =
n∑
j=0

|∂Uj (x)| (18)

⇒ K(N)+
n∑

j=N+1

jD−1−ε 6 |Un(x)| 6 K(N)+
n∑

j=N+1

jD−1+ε (19)

in which K(N) = ∑N
j=0 |∂Uj (x)|. Now we can give a lower bound for the sum on the

left-hand side and an upper bound for the one on the right-hand side by replacing them with
integrals.

n∑
j=N+1

jD−1−ε >
∫ n

N

jD−1−ε dj = jD−ε

D − ε
∣∣∣∣n
N

(20)

n∑
j=N+1

jD−1+ε 6
∫ n+1

N+1
jD−1+ε dj = jD+ε

D + ε
∣∣∣∣n+1

N+1

. (21)
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With these bounds we obtain

ln

(
K(N)+ n

D−ε −ND−ε

D − ε
)
6 ln |Un| 6 ln

(
K(N)+ (n+ 1)D+ε − (N + 1)D+ε

D + ε
)

(22)

⇒ ln(nD−ε)+ ln

(
K(N)

nD−ε
+ 1

D − ε
(

1− N
D−ε

nD−ε

))
6 ln |Un|

6 ln((n+ 1)D+ε)+ ln

(
K(N)

(n+ 1)D+ε
+ 1

D + ε
(

1− (N + 1)D+ε

(n+ 1)D+ε

))
. (23)

Because the arguments of the second logarithm on each side are uniformly bounded for any
n ∈ N and limn→∞ ln(n+1)

ln(n) = 1, we can find anN ′ ∈ N, N ′ > N such that∀n > N ′

D − ε +
ln
(
K(N)

nD−ε − 1
D−ε

(
1− ND−ε

nD−ε

))
ln(n)

> D − 2ε (24)

and

(D + ε) ln(n+ 1)

ln(n)
+

ln
(

K(N)

(n+1)D+ε + 1
D+ε

(
1− (N+1)D+ε

(n+1)D+ε

))
ln(n)

6 D + 2ε. (25)

From this we immediately find∣∣∣∣ ln |Un|ln(n)
−D

∣∣∣∣ 6 2ε ∀n > N ′. (26)

�

Inversely, the existence of the internal scaling dimension does not imply the existence
of the connectivity dimension. We illustrate this fact with the following example.

Example 4.1.We will construct a graphG with uniformly bounded node degree, degree of
x ∈ N less than or equal tod > 3, which has internal scaling dimensionDS = D > 1 but the
connectivity dimension limn→∞ ln |∂Un(x0)|

ln(n) does not exist and even lim supn→∞
ln |∂Un(x0)|

ln(n) =
D 6= D − 1, i.e.DC(x0) = DS(x0) + 1. To this end we construct a ‘linear graph’ in the
fashion depicted in figure 1. In the figured is equal to 3. The main idea of the construction
is to let |∂Un(x0)| oscillate so much that limn→∞ D̃n(x0) does not exist any more but we
can still have convergence ofDn(x0) and thus the internal scaling dimension exists.

We choose the numbersnk such thatnk+1 = cnk with somec > 0. For technical reasons
we choosec > d1/D. With this choice we already fulfil the prerequisite to use lemma 4.9.

bk

node x0

0 1 2
3

4

5 6

n

n

n

k

k

k+1

+

Figure 1. Example of a graph with strange behaviour ofD̃n(x0) = ln |∂Un(x0)|
ln(n) .
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Let us denote the ‘leftmost’ node asx0. All distances will refer tox0 as the origin. The
construction is determined by the following requirements. From distancenk to nk + bk the
graph is a simple string of nodes and from distancenk+bk+1 to nk+1 a complete† (d−1)-
nary‡ tree graph.bk is chosen to bebk = max{b ∈ {0, . . . , nk+1− nk} : |Unk+1| > (nk+1)

D}.
This means that we start the(d − 1)-nary tree as late as possible to still be sure to surpass
our aim of |Unk+1| = (nk+1)

D. It is easily established thatnk+1 − nk gets large enough for
nk > N with someN ∈ N to contain the necessary(d − 1)-nary tree. A necessary and
sufficient condition for this is

(d − 1)nk+1−nk > nDk+1− nDk (27)

⇐⇒ (d − 1)cnk−nk > cDnDk − nDk (28)

⇐⇒ (d − 1)nk(c−1) > (cD − 1)nDk (29)

which certainly holds for anynk > N with sufficiently largeN ∈ N because the exponential
function grows faster than any polynomial. The part of the graph wherenk+1−nk might be
too small for the above construction, we choose to be of arbitrary form with|Unk | = bnDk c.

Now we calculate the internal scaling dimension of the constructed graph. We know
∀nk > N

ln |Unk (x0)|
ln(nk)

= ln(nDk +1k)

ln(nk)
(30)

where1k is the additional number of nodes we obtain because of the usage ofcomplete
tree graphs. From the construction principle we know

1k 6 |∂Unk (x0)| 6 (d − 1)|∂Unk−1(x0)| 6 (d − 1)|Unk−1(x0)| 6 (d − 1)nDk (31)

which is a rather crude estimate. Nonetheless we obtain

ln(nDk )

ln(nk)
6 ln |Unk (x0)|

ln(nk)
6 ln(dnDk )

ln(nk)
(32)

⇒ lim
k→∞

ln |Unk (x0)|
ln(nk)

= D. (33)

Using lemma 4.9 we obtain

DS(x0) = lim
n→∞

ln |Un(x0)|
ln(n)

= D. (34)

Finally we apply lemma 4.8 and find the dimensionD starting from any node.
On the other hand we have to consider lim inf and lim sup of the sequenceln |∂Un(x0)|

ln(n) .

The lim inf is trivial because|∂Unk+1(x0)| = 1 which implies that lim infn→∞ ln |∂Un(x0)|
ln(n) = 0.

As far as the lim sup is concerned we know

|Unk+1(x0)| − |Unk (x0)| = bk +
ak∑
j=0

(d − 1)j = bk + (d − 1)ak+1− 1

d − 2
(35)

with ak = nk+1− (nk + bk). On the other hand

|Unk+1(x0)| − |Unk (x0)| = nDk+1+1k+1− (nDk +1k). (36)

† In a complete tree graph every node has maximal degree.
‡ In a (d−1)-nary tree graph every node has(d−1) or less children such that the degree of each node is bounded
by d.



2456 T Nowotny and M Requardt

Using (35), (36),1k 6 (d − 1)nDk , bk 6 nk+1− nk, c > d1/D and |∂Unk+1|(x0) = (d − 1)ak ,
we find after a short calculation that

D + ln
(

1
d−1 − d−2

d−1(1− 1
c
)n1−D
k+1

)
ln(nk+1)

6 ln |∂Unk+1(x0)|
ln(nk+1)

(37)

⇒ lim sup
k→∞

ln |∂Unk (x0)|
ln(nk)

> D. (38)

However, we always have

ln |∂Un(x0)|
ln(n)

6 ln |Un(x0)|
ln(n)

(39)

⇒ lim sup
n→∞

ln |∂Un(x0)|
ln(n)

6 D. (40)

Taking this together with (38) we finally obtain

lim sup
n→∞

ln |∂Un(x0)|
ln(n)

= D. (41)

This example shows that we cannot gather much information about the behaviour of
|∂Un(x0)| from the existence and value of the internal scaling dimensionDS of G. The
only assertion always valid is lim supn→∞

ln |∂Un(x)|
ln(n) 6 DS(x) ∀x ∈ N .

5. Construction of graphs

In the following we wish to show how to construct graphs of arbitrary real internal scaling
dimension. We also want to investigate the connections between the internal scaling
dimension of graphs and the box counting dimension of fractal sets. As will be seen
below there is a strong relationship between self similar sets and what we call self-similar
graphs with noninteger internal scaling dimension.

5.1. Conical graphs with arbitrary dimension

For the sake of simplicity we concentrate our discussion on graphs with dimension
1 6 D 6 2. Graphs with higher dimension are easily constructed using a nearly identical
scheme.

Let 1 6 D 6 2 be an arbitrary real number. Now we construct the graph as in
figure 2. On levelm we use a width ofb(2m−1)D−1c boxes. The construction is continued
‘downwards’ to infinity. To calculate the dimension we observe that starting fromx0 we
reach levelm after n = 2m− 1 steps. Thus we find withnk := 2k − 1

|∂Unk (x0)| = bnD−1
k c ⇒ lim

k→∞
ln |∂Unk (x0)|

ln(nk)
= D − 1. (42)

Using lemmas 4.11, 4.8 and 4.9 we see that this graph has internal scaling dimension
DS = D. If we close the construction horizontally, i.e. introduce bonds between the leftmost
and the rightmost nodes on each level we can even achieve a completely homogeneous node
degreed = 3.

Remark.
(1) The constructed graph has privileged nodes, the one we denoted as nodex0 and its

counterpart on the same level.
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Figure 2. Example of a5
3-dimensional conical graph.

(2) Locally the constructed conical graph is completely isomorphic to a two-dimensional
lattice. The noninteger dimension is only implemented as a global property of the graph.

5.2. Self-similar graphs

It is well known in graph theory that it is notoriously difficult to construct large graphs with
prescribed properties. It also proved quite difficult to construct graphs with a prescribed
(internal scaling) dimensionDS = D which do not exhibit the disadvantages of the conical
graphs described above. The main idea which solves the problem is to use the well known
theory of self-similar sets or fractals and their dimension theory. In the following we wish
to show how this works and that we can indeed construct adjoint graphs to self-similar
sets which have internal scaling dimension equal to the box counting dimension of the
self-similar sets.

Given a strictly self-similar set inRp we canonically construct an adjoint graph which
will also be called self-similar. The construction principle is based on an algorithm to
compute the box counting dimension of a self-similar set. We will illustrate our proceedings
with one main example. We construct a self-similar set generated with the open unit square
in R2 with lower left corner at the origin and the similarity transforms

S1 : x 7−→ 1

3
x +

(
0

0

)
S2 : x 7−→ 1

3
x +

(
0
2
3

)
S3 : x 7−→ 1

3
x +

( 1
3
1
3

)
(43)
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Figure 3. Construction steps of the example self-similar set.

S4 : x 7−→ 1

3
x +

( 2
3

0

)
S5 : x 7−→ 1

3
x +

( 2
3
2
3

)
. (44)

This set is sometimes calledMaltese Cross, cf [7]. The first construction steps are shown
in figure 3. For details concerning self-similar sets and dimensions of fractals see [6].

5.2.1. Construction based on self-similar sets.Let M be a strictly self-similar set with
similarity transformsSi , i ∈ I , I ⊂ N and |I | < ∞. The contraction factorsci of Si may
all be equal,ci = c ∈ (0, 1). Now we coverM with cubic latticesLn ⊂ Rp with closed
cubes of edge lengthcn, n ∈ N, and replace every cube which has nonvoid intersection with
M by a node. Nodes will be connected iff the corresponding cubes in the covering cubic
lattices have a nonvoid intersection, i.e. have a common corner or edge.

By this construction we obtain a finite graphGn for eachn ∈ N. The degree of these
Gn is uniformly bounded because ann-dimensional cube can only touch a finite number of
neighbour cubes in the cubic lattice. The graph we are interested in isG∞, the graph we
obtain through infinite continuation of our construction. The first steps of this construction
scheme for our example are shown in figure 4.

Figure 4. Construction of graphs from self-similar sets.
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1
0

Figure 5. Self-contained construction.

Remark.
(1) We will see later on, that no problems arise from the infinite continuation of the

construction steps.
(2) The self-similarity ofM transfers toG in the sense that we can also define an

equivalence of the similarity transforms of the self-similar setM. Details will become clear
when we give a self-contained algorithm for the construction of self-similar graphs.

(3) Connected self-similar sets produce connected self-similar graphs. The inverse is
not true in general as our example shows. HereG is connected but the self similar set we
started with is not.

5.2.2. Self-contained construction algorithm.We wish to illustrate two different views of
a self-contained construction algorithm for self-similar or hierarchical graphs.

Construction by insertion.
(1) We start with a single node,G0 = ({n0}, ∅).
(2) G1 is the so-called generator, some finite graph. We denote the number of nodes in

G1 asNg.
(3) We constructGn+1 from Gn by replacing every node inGn by the generatorG1 and

interpret the original bonds inGn as bonds between some ‘marginal’ nodes of the different
copies ofG1.

In figure 5 we have drawn the first construction steps of our example.
Construction by ‘copy and paste’.
(1) and (2) are identical to 1.
(3) We constructGn+1 from Gn by copyingGn Ng times and pasting these copies together

in the same fashion as the nodes of the generator are arranged.
The construction steps cannot be distinguished from those in figure 5.
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Remark.
(1) It becomes clear when looking at examples that the above construction algorithms

are equivalent.
(2) The construction is, of course, not unique. The result strongly depends on the choice

of the nodes inGn+1 which carry the bonds ofGn in the first construction orG1 in the second,
respectively. In our example all ‘marginal’ nodes of the generator are equivalent because
of the symmetry of the generator and therefore the construction is unique.

(3) Seen from the viewpoint of the second construction it becomes clear that the local
neighbourhood of any node does not change in the course of the further construction.
Therefore we can investigate any property ofG in someGN with sufficiently largeN . Thus
the infinite continuation of construction steps need not worry us at all.

(4) The first construction scheme provides us with the analogon of the similarity
transforms of the self-similar set. These transforms correspond to the mapping ofG on
G̃ where G̃ is formed fromG like someGn+1 from Gn. Clearly G is invariant under this
mapping.

As we can see from our example, all three construction algorithms, the self-contained
ones as well as the one based on a self-similar set, are equivalent provided the self-similar
set and the choice of the generator match. Seen in this light we can use all the construction
principles simultaneously in our arguments.

5.2.3. Dimension of self-similar graphs.Now we calculate the dimension of the graphs we
obtain by the above construction using some self-similar setM. For the sake of simplicity
we assume thatG1 has a central nodex0 in the sense that all ‘marginal’ nodes which carry
the ‘outer’ bonds all have the same distancer to this node. We further assume that1

c

(c the contraction parameter) is a natural number which is true in most of the well known
examples of self-similar sets and finally that the self-similar set produces a connected adjoint
graph. Then it is easy to see that starting from nodex0 we can exactly reach all nodes of
construction stepk + 1 afternk+1 = r + 2rnk + nk = (2r + 1)nk + r steps in the graph,
with, of course,n0 = 0. Thus |Unk (x0)| is equal to the number of nodes in construction
stepk, i.e. |Unk (x0)| = Nδk = Nck†. Explicitly we obtain fornk

nk =
k−1∑
j=0

(2r + 1)j r = r (2r + 1)k − 1

2r
∀k > 1. (45)

Now let us relater to the contraction parameterc of the self-similar set. We assumed that
the graph constructed from the self-similar set is connected. This implies that there are1

c

nodes on the ‘diagonal’ of the generator, i.e. 2r + 1 = 1
c
. Now we have for the internal

scaling dimension ofG

lim
k→∞

Dnk (x0) = lim
k→∞

ln(Nck )

ln
(
r (2r+1)k−1

2r

) (46)

= lim
k→∞

ln(Nck )

ln((2r + 1)k)+ ln
(

1−(2r+1)−k
2r

) (47)

= lim
k→∞

ln(Nck )

− ln(ck)+ ln
(

1−(2r+1)−k
2r

) = dimB(M) (48)

† Nδk is the number of cubes of edge lengthδk intersecting M, see the calculation of the box counting dimension
in e.g. [6].
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Figure 6. Some generators.

in which dimB(M) is the box counting dimension ofM. Of course lemmas 4.8 and 4.9
provide us with the knowledge that this is the dimension ofG starting from any node.

Thus we established equality of the box counting dimension of self-similar sets and the
internal scaling dimension of the adjoint self-similar graphs under the assumptions stated
above.

Remark.The assumed existence of a central nodex0 is not essential for the equality of the
dimensions of the fractal and the graph. The equality still holds in a more general context,
e.g. for fractals like the Sirpinski Triangle. It is difficult though to give a general proof for
arbitrary self-similar sets.

5.2.4. Approximation of a two-dimensional lattice.In this paragraph we wish to show
how it now becomes possible to do a dimensional approximation of ann-dimensional cubic
lattice. Again, for the sake of simplicity, we discuss the idea only with a two-dimensional
lattice but the generalization ton dimensions is obvious.

We introduce generators as shown in figure 6. With these we obatin graphs of dimensions

D
(l)
S =

ln(2l2+ 2l + 1)

ln(2l + 1)
(49)

in which l is the number which labels the generators in figure 6. Obviously we have

lim
l→∞

D
(l)
S = lim

l→∞
ln(2l2+ 2l + 1)

ln(2l + 1)
= lim

l→∞
2 ln(l)+ ln(2+ 2

l
+ 1

l2
)

ln(l)+ ln(2+ 1
l
)
= 2. (50)

In this sense we have a dimensional approximation of a two-dimensional lattice as stated
above. This might have some relevance in connection with the dimensional regularization
used in many renormalization approaches to quantum field theory.

Remark.The generators above correspond to fractal sets known as ‘sponges’, see e.g. [7].
We can construct such ‘sponges’ for any dimensionn, we just need to modify the generators
appropriately.

5.2.5. How to change the dimension of a graph.To enlarge the dimension of a graph it is
necessary to add either bonds or nodes to the graph. In the former case we showed that
adding only bonds between nodes with original distance less than somek ∈ N does not
change the dimension. We wish to illustrate this with an example. Let us try to obtain
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Figure 7. Deforming a one-dimensional graph into a two-dimensional one.

a two-dimensional lattice starting from a one-dimensional one. The procedure is shown
in figure 7. The dotted bonds are those we added. As is easily seen, the former distance
between the newly connected nodes grows unboundedly withn, the number of the nodes
in the original graph.

If we choose to add nodes instead, it is equivalent to adding bonds to new nodes which
formerly had infinite distance to the nodes of the original graph. This also illustrates the
general result because adding finitely many nodes certainly does not change the dimension.
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